On Level Hypersurfaces of the Complete Lift of a Submersion

نویسنده

  • Mehmet Yıldırım
چکیده

Suppose that (M, G) is a Riemannian manifold and f : M → R is a submersion. Then the complete lift of f, f : TM → R defined by f = ∂f ∂xi y is also a submersion. This interesting case leads us to the investigation of the level hypersurfaces of f as a submanifold of tangent bundle TM . In addition, we prolonge the level hypersurfaces of f to N̄ = (f)(0). Also, under the condition ∇̂f is a constant, we show that N̄ has a lightlike structure with induced metric Ḡ from G.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

Linear Weingarten hypersurfaces in a unit sphere

In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].  

متن کامل

‎Spacelike hypersurfaces with constant $S$ or $K$ in de Sitter‎ ‎space or anti-de Sitter space

‎Let $M^n$ be an $n(ngeq 3)$-dimensional complete connected and‎ ‎oriented spacelike hypersurface in a de Sitter space or an anti-de‎ ‎Sitter space‎, ‎$S$ and $K$ be the squared norm of the second‎ ‎fundamental form and Gauss-Kronecker curvature of $M^n$‎. ‎If $S$ or‎ ‎$K$ is constant‎, ‎nonzero and $M^n$ has two distinct principal‎ ‎curvatures one of which is simple‎, ‎we obtain some‎ ‎charact...

متن کامل

Hoph Hypersurfaces of Sasakian Space Form with Parallel Ricci Operator Esmaiel Abedi, Mohammad Ilmakchi Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran

Let M^2n be a hoph hypersurfaces with parallel ricci operator and tangent to structure vector field in Sasakian space form. First, we show that structures and properties of hypersurfaces and hoph hypersurfaces in Sasakian space form. Then we study the structure of hypersurfaces and hoph hypersurfaces with a parallel ricci tensor structure and show that there are two cases. In the first case, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009